

AEROSPACE

EPOXY RESINS, CURING AGENTS AND REACTIVE DILUENTS

Energising possibilities...
Stimulating growth...

LEGACY

Founded in 1947 by a legendary Indian, Kasturbhai Lalbhai, Atul Ltd (Atul), is amongst the first companies of independent India. It has the distinction of being the first private sector company of India inaugurated by its first Prime Minister, Pandit Jawaharlal Nehru. Atul is part of Lalbhai Group, one of the oldest diversified business houses of the country engaged in manufacturing since 1896. Ever since its inception, Atul has been committed to serving society, particularly in the areas of education, empowerment, health, relief, infrastructure and conservation.

PROFILE

The first site of Atul, spread over 1,250 acres of land, houses one of the greenest and largest chemical complexes of its kind in the world. Starting with just a few textile dyes, the Company now manufactures 900 products and 450 formulations, managing complex chemical processes in a responsible way. It has also established fruitful and time-tested collaborations with leading multinational companies of the world.

Atul serves customers belonging to diverse industries including Adhesives, Agriculture, Animal Feed, Automobile, Composites, Construction, Cosmetic, Defence, Dyestuff, Electrical and Electronics, Flavour, Food, Footwear, Fragrance, Glass, Home Care, Horticulture, Hospitality, Paint and Coatings, Paper, Personal Care, Pharmaceutical, Plastic, Polymer, Rubber, Soap and Detergent, Sports and Leisure, Textile, Tyre and Wind Energy. In order to enhance customer focus, the Company has divided its product portfolio into seven businesses - Aromatics, Bulk Chemicals and Intermediates, Colors, Crop Protection, Floras, Pharmaceuticals and Intermediates and Polymers, and has established subsidiary companies in the USA, the UK, China, Brazil and the UAE.

POLYMERS BUSINESS

Epoxy resins, reactive diluents and curing agents are manufactured and marketed under the trade name 'Lapox®' by the Polymers Business of Atul. The manufacture of epoxy systems began in 1960 in Cibatul Ltd, a joint venture between the erstwhile Ciba-Geigy (Switzerland) and Atul. Following the disintegration of Ciba-Geigy, Cibatul was merged into Atul in 1999.

The state-of-the-art manufacturing facilities for these products are located in Atul complex, 200 km north of Mumbai. In addition to its leadership position within India, Polymers also sells to discerning customers outside the country. The Business has been awarded ISO 9001:2008 and ISO 14001.

Lapox® is a registered trademark of Atul Ltd.

Product range

Resins

Bisphenol-A and Bisphenol-F based resins

Cycloaliphatic resins

Epoxy phenol novolac resins

Modified and formulated resins

Multifunctional resins

Reactive diluents

Aliphatic and Aromatic (mono, di and trifunctional)

Curing agents

Aliphatic amines and their adducts

Aromatic amines and their adducts

Cycloaliphatic amines and their adducts

Phenalkamines

Polyamides and Polyamidoamines

Accelerators and catalysts

PURPOSE

We are committed to significantly enhancing value for our Stakeholders by:

- fostering a spirit of continuous learning and innovation
- · adopting developments in science and technology
- providing high quality products and services, thus becoming the most preferred partner
- having people who practice Values and exemplify a high standard of behaviour
- seeking sustained, dynamic growth and securing long-term success
- · taking responsible care of the surrounding environment
- improving the quality of life of the communities we operate in

Industries served

Adhesives Construction

Aerospace and Defence Electrical and Electronics

Automotive Food and Beverage packaging

Composites Marine

Paint and Coatings
Sports and Leisure

Transport

Wind Energy

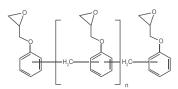
2 3

High performance building blocks

Epoxy resins

Bifunctional resins

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$



Diglycidyl Ether of Bisphenol-F (DGEBF)

Lapox [®]	Colour	Colour Epoxy value Viscosit @ 25°C		Description	
	Gardner	Eq/kg	mPa s		
ARCH-13	Max 100 ² (APHA)	4.16 - 4.54	2,000 - 4,000	A low viscosity cycloaliphatic epoxy resin based on hydrogenated Bis-A for UV resistant applications.	
ARF-15	Max 2	6.00 - 6.40	1,200 - 1,600	A low viscosity, high purity liquid epoxy resin based on Bis-F for advanced applications.	
ARL-12	Max 1	5.26 - 5.55	9,000 - 12,000	A standard epoxy resin for structural composites.	
ARL-13	Max 50 ² (APHA)	5.71 - 5.95	4,000 - 5,000	A low viscosity, distilled and pure liquid epoxy resin based on Bis-A for advanced applications.	
ARN-16	Max 16	6.50 - 7.50	1,000 - 2,500 @ 50°C	A naphthalene based epoxy resin to achieve high glass transition temperature in formulations.	

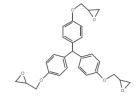
¹Brookfield viscosity

Epoxy phenol novolac resins

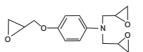
Epoxy Phenol Novolac (EPN)

Lapox [®]	Colour Epoxy value Viscosity¹ @ 25°C			Description
	Gardner	Eq/kg	mPa s	
ARPN-25	Max 3	5.59 - 5.81	1,100 - 1,700 @ 52°C	A low viscosity resin with average 2.5 functionality for composite applications.
ARPN-36	Max 2	5.50 - 5.70	20,000 - 50,000 @ 52°C	A standard semi-solid resin having average 3.6 functionality for composite applications.
ARPN-36 M 80	Max 2	4.40 - 4.60	150 - 350	A solution of resin ARPN-36 in MEK for composite applications.
ARPN-36 X 80	Max 2	4.40 - 4.60	800 - 1,500	A solution of resin ARPN-36 in xylene for composite applications.

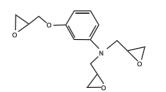
Brookfield viscosity

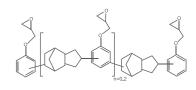


Multifunctional resins


$$\bigvee_{0}^{\circ} N - \bigvee_{0}^{\circ} \bigvee_{0}^{\circ}$$

MDA based


Ethyl substituted MDA based


Triphenol methane based

p-amino phenol based

m-amino phenol based

Dicyclopentadiene based

Lapox [®]	Colour	Epoxy value	Viscosity ¹ @ 25°C	Description
	Gardner	Eq/kg	mPa s	
ARTF-13	Max 12	7.46 - 8.55	7,000 - 11,000 ² @ 50°C	
ARTF-14	Max 12	7.46 - 8.55	10,000 - 12,000 ² @ 50°C	Medium viscosity variants of tetrafunctional resins based on MDA for aerospace
ARTF-15	Max 12	7.46 - 8.55	10,000 - 12,000 ² @ 50°C	and high performance composites.
ARTF-16	Max 12	7.46 - 8.55	10,000 - 12,000 ² @ 50°C	
ARTF-17	Max 12	7.46 - 8.55	17,000 - 19,000 ² @ 50°C	A high viscosity, tetrafunctional resin based on MDA for aerospace and high performance composites.
ARTF-18	Max 12	7.46 - 8.55	7,000 - 19,000 ² @ 50°C	A general purpose tetrafunctional resin based on MDA for aerospace and high performance composites.
ARTF-23	Max 12	8.55 - 9.00	3,000 - 6,000 @ 50°C	A low viscosity, tetrafunctional resin based on MDA for aerospace and high performance composites.
ARTF-33	Max 7	7.52 - 8.47	7,000 - 12,000	A tetrafunctional resin based on ethyl substituted MDA for aerospace and high performance applications. The product offers low viscosity and reactivity.
ARTF-34	Max 13	5.88 - 6.66	30 - 55 ² @ 150°C	A trifunctional resin based on triphenol methane for aerospace and high performance composites. The product offers high glass transition temperature.
ARTF-35	_	8.70 - 9.50	2,000 - 5,000	A trifunctional unmodified resin based on <i>p</i> -amino phenol to achieve low viscosity and high glass transition temperature.
ARTF-36	_	9.40 - 10.50	550 - 850	A distilled trifunctional unmodified resin based on <i>p</i> -amino phenol to achieve very low viscosity and reactivity.
ARTF-37	_	9.10 - 9.80	7,000 - 13,000	A trifunctional unmodified resin based on <i>m</i> -amino phenol to achieve low viscosity and high glass transition temperature.
ARTF-38	_	9.80 - 10.6	1,500 - 4,800	A distilled trifunctional unmodified resin based on <i>m</i> -amino phenol for aerospace and high performance applications.
ARTF-50	Max 16	4.17 - 4.44	1,000 - 1,500 ² @ 85°C	A multifunctional resin based on Dicyclopentadiene (DCPD). The product offers excellent resistance to moisture and provides high thermal stability.
ARTF-32	Max 18	7.40 - 8.50	2,000 - 4,000 @ 50°C	A low viscosity, tetrafunctional resin based on substituted MDA for aerospace and high performance composites.
ARTF-39	Max 10	7.00 – 8.00	2,500 - 4,000 @ 50°C	A modified low viscosity, multifunctional resin for aerospace and high performance composites.

¹Brookfield viscosity

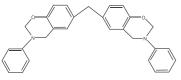
 Λ

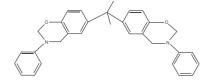
²ASTM D1209

^{*}Method: Colour - ASTM D1544; Epoxy value - ASTM D1652; Viscosity - ASTM D2196

^{*}Method: Colour - ASTM D1544; Epoxy value - ASTM D1652; Viscosity - ASTM D2196

²Viscosity by CAP 2000 (ASTM D4287)


^{*}Method: Colour - ASTM D1544; Epoxy value - ASTM D1652; Viscosity - ASTM D2196



LAPOX®

Other specialty resins

Benzoxazines

Bisphenol-F based

Bisphenol-A based

Lapox®	Appearance	Softening point	Viscosity ¹ @ 25°C	Description	
	– °C mPa s		mPa s		
ARBZ-10	Yellowish solid	60 - 80	1,000 - 7,000 ² @ 100°C	A Bis-F based benzoxazine resin for high performance composites. The product offers excellent resistance to moisture, has low shrinkage and provides flame retardancy.	
ARBZ-10 A 75	Yellowish liquid	74 - 76% (solid content)	100 - 400	A Bis-F based benzoxazine resin ARBZ-10 solution in acetone with 75% solids. The product offers excellent resistance to moisture, has low shrinkage and provides flame retardancy.	
ARBZ-11	Yellowish solid	60 - 80	50 - 500² @ 125°C	A Bis-A based benzoxazine resin for high performance composites. The product offers excellent resistance to moisture and low shrinkage.	

¹Brookfield viscosity

²Viscosity by CAP 2000 (ASTM D4287)

*Method: Viscosity - ASTM D2196

Bismaleimides

Bismaleimide

Lapox [®]	Appearance -	Melting point	Description
ARBMI-11	Fine yellow powder	155 - 158	A bismaleimide resin for composite applications. The product offers excellent thermal stability.
ARD-63	Yellow to amber liquid	-	A co-reactant to use along with ARBMI-11. The product offers excellent processability and achieves high mechanical properties.

^{*}Method: Melting point - ASTM D1519

High performance epoxy curing agents

Ethyl	substiuted	DDM	based

Lapox [®]	Chemistry	Appearance	Melting point	Viscosity¹ @ 25°C	Description	
	-	-	°C	mPa s		
AH-667	4,4'-Diaminodiphenyl methane	Brown viscous liquid	-	1,400 - 2,000 @ 60°C	A semi-solid aromatic amine curing agent based on DDM. The product offers high glass transition temperature and easy processing.	
K-5	4,4'-Diaminodiphenyl methane	White to tan pastilles	88 - 92	_	A pure aromatic amine curing agent- 4,4'-Diaminodiphenyl methane recommended to cure epoxy resins at elevated temperatures.	
K-450	3,3'-Diethyl-4,4'- diaminodiphenyl methane	Dark brown liquid	-	250 - 400 @ 40°C	A liquid aromatic amine curing agent with very low reactivity recommended to use along with accelerator for composite applications.	
AH-422	3,3'-Dimethyl-4,4'- diaminodicyclohexyl methane	Colourless transparent liquid	-	100 - 140	An unmodified low viscosity cycloaliphatic amine curing agent for achieving a long pot life and high glass transition temperature.	
AH-442	4,4'-Diaminodicyclohexyl methane	Colourless transparent liquid	35 - 37	_	A cycloaliphatic liquid MDA for achieving a long pot life and high glass transition temperature.	
AH-618	Aromatic amine	Yellow to brown liquid	-	100 - 300	A hot curing aromatic amine curing agent recommended for achieving a long pot life and high glass transition temperature.	

¹Brookfield viscosity

^{*}Method: Melting point - ASTM D1519; Viscosity - ASTM D2196

Lapox®	Colour Gardner	Epoxy value	Viscosity¹ @ 25°C	HyCl %	Structure	Description
ARD-52	Max 1	6.20 - 6.80	15 - 30	Max 0.15	O (CH ₂) _e O O	A difunctional aliphatic reactive diluent based on 1,6-hexanediol to modify resins used for composite applications.
ARD-54	Max 2	2.90 - 3.20	40 - 90	Max 0.15		A difunctional aliphatic reactive diluent based on polypropylene glycol that imparts higher flexibility to epoxy resins.
ARD-56	Max 1	6.90 - 8.00	12 - 18	Max 0.10	&oXov.	A difunctional aliphatic reactive diluent based on neopentyl glycol recommended for composite formulations.
ARD-57	Max 16	8.15 - 9.50	100 - 200	_		A difunctional aromatic reactive diluent based on aniline recommended for high performance composite formulations.
ARD-59	Max 1	5.20 - 6.20	20 - 50	Max 0.20	0 (CH,), 0 (CH,), 0	A difunctional aliphatic reactive diluent based on dipropylene glycol recommended for composite formulations.
ARD-60	Max 1	8.00 - 9.00	10 - 22	Max 0.15	O (CH ₂) ₄	A high purity difunctional aliphatic reactive diluent based on 1,4-butanediol recommended to modify resins used for composite applications.

¹Brookfield viscosity

Accelerators and catalysts

Lapox [®]	Appearance Colour Viscosity¹ Am		Amine value	Description	
		Gardner	mPa s	mg KOH/g	
AC-10	White crystals	-	154 - 156 (melting point,°C)	_	An accelerator recommended for benzoxazine resins to reduce cure temperature.
AC-11	White crystals	-	Min 127 - 134 (melting point,°C)	_	A faster accelerator for benzoxazine resins to reduce cure temperature.
AC-13	Clear liquid	Max 2	Max 10	_	A liquid triamine accelerator recommended to accelerate anhydrides, polyamides for composite applications.
AC-14	Clear yellow brown liquid	Max 6	150 - 300	580 - 635	A liquid tertiary amine accelerator recommended to accelerate anhydrides, polyamides and amines for composite applications.
AC-19	Clear liquid	Max 1	10 - 30	_	A low reactive liquid triamine accelerator recommended to accelerate anhydrides, polyamides and amines for composite applications.
AC-20	Brown liquid or solid	-	Max 100	36 - 42 (melting point,°C)	An accelerator recommended to accelerate anhydrides, polyamides and amines for composite applications.
K-86 (AC-15)	White crystalline powder	-	Min 75 (melting point,°C)	_	A solid polyamine complex recommended to accelerate aromatic amines.
K-112	Clear brown liquid	-	1,000 - 1,800	_	A modified viscous tertiary amine accelerator recommended to accelerate anhydrides, polyamides and amines for composite applications.

¹Brookfield viscosity

8

^{*}Method: Colour - ASTM D1544; Epoxy value - ASTM D1652; Viscosity - ASTM D2196; HyCl - ASTM D1726

^{*}Method: Colour - ASTM D1544; Viscosity - ASTM D2196; Amine value - ASTM D2073

High performance epoxy systems

Hot melt prepreg systems

Lapox [®]	Mixing ratio	Gel time	Tg¹	Shelf life	Description	
	Parts by weight	minutes	°C	weeks		
ARL-159 / AH-619	100 : 40	30 @ 150°C	180 - 200	24 @ < 5°C	A hot curing epoxy system for manufacturing structural components requiring high temperature performance in aerospace, defence and engineering applications.	
ARL-160 / AH-357 / AC-22	100 : 15 : 1-3	8 - 9 @ 120°C	110 - 120	24 @ < 5°C	A hot melt prepreg system for structural components for sporting goods, defence, aerospace, infrastructure and general engineering applications.	

¹Tg: Glass transition temperature

Infusion systems

Lapox [®]	Mixing ratio	Mix viscosity ¹ @ 25°C	Pot life² @ 25°C	Tg³	Description	
	Parts by weight	mPa s	minutes	°C	i i	
ARL-125 / AH-332	100 : 32	600 - 800	8 - 14	80 - 90	Medium viscosity epoxy systems with short pot life recommended for Resin Infusion (RI) and Resin	
ARL-125 / AH-333	100 : 32	600 - 750	14 - 20	80 - 90	Transfer Moulding (RTM) for making small to large composite components.	
ARL-125 / AH-334	100 : 32	600 - 750	25 - 35	80 - 90	Medium viscosity epoxy systems with moderate pot life recommended for Resin Infusion (RI) and Resin	
ARL-125 / AH-335	100 : 32	300 - 700	50 - 60	75 - 85	Transfer Moulding (RTM) for making small to large composite components.	
ARL-125 / AH-336	100 : 32	300 - 700	80 - 100	75 - 85	A medium viscosity epoxy system with long pot life recommended for Resin Transfer Moulding (RTM) and Resin Infusion (RI) for making small to large composite components.	
ARL-125 / AH-365	100 : 32	300 - 700	50 - 60	75 - 85	GL certified low viscosity epoxy systems recommended for Resin Infusion (RI) and Resin Transfer Moulding	
ARL-125 / AH-367	100 : 32	200 - 300	300 - 380	75 - 85	(RTM) for making small to large composite components.	
ARL-125 / AH-368	100 : 32	200 - 300	350 - 450	75 - 85	A low viscosity epoxy system recommended for Resin Infusion (RI) and Resin Transfer Moulding (RTM) for making small to large composite components.	
ARL-135 LV / AH-422	100 : 35	400 - 600	300 - 350	110 - 120	A medium viscosity epoxy system with long pot life and high glass transition temperature recommended for Resin Infusion (RI) of large components.	
ARL-158 / AH-419	100 : 42	300 - 500	600 - 700	170 - 200	A low viscosity epoxy system offers high glass transition temperature for dimensional stability even at high temperatures.	
L-12 / AH-411	100 : 22	800 - 1,200	90 - 120	140 - 155	A moderate viscosity ambient curing epoxy system recommended for very high glass transition temperature.	
L-552 / K-552	100 : 38	600 - 700	110 - 160	115 - 130	A low viscosity epoxy system offers high glass transition temperature with superior chemical resistance.	

¹Brookfield viscosity

Hand lay-up systems

Lapox [®]	Mixing ratio	Mix viscosity ¹ @ 25°C	Pot life ² @ 25°C	Tg³	Description	
	Parts by weight	mPa s	minutes	°C		
ARL-135 / AH-332	100 : 32	700 - 1,200	8 - 14	80 - 90	Medium viscosity epoxy systems with short pot life recommended for hand lay-up and Resin Transfer	
ARL-135 / AH-333	100 : 32	700 - 1,200	14 - 20	80 - 90	Moulding (RTM) for making small to large composite components.	
ARL-135 / AH-334 GE	100 : 32	700 - 1,200	25 - 35	80 - 90	A GL certified moderate viscosity with moderate pot life epoxy system recommended for hand lay-up and Resin Transfer Moulding (RTM) for making small to large composite components.	
ARL-135 / AH-335	100 : 32	500 - 700	50 - 60	75 - 85	A medium viscosity epoxy system with moderate pot life recommended for hand lay-up and Resin Transfer Moulding (RTM) for making small to large composite components.	
ARL-135 / AH-336	100 : 32	500 - 700	80 - 100	75 - 85	Medium viscosity epoxy systems with long pot life recommended for hand lay-up and Resin Transfer	
ARL-135 / AH-337	100 : 32	300 - 700	300 - 380	75 - 85	Moulding (RTM) for making small to large composite components.	

¹Brookfield viscosity

Tooling systems

Lapox®	Mixing ratio	Mix viscosity ¹ @ 25°C	Pot life ² @ 25°C	Tg³	Description
	Parts by weight	mPa s	minutes	°C	
ARL-138 / AH-339	100 : 30	400 - 600	120 - 180	130 - 140	A standard tooling system with excellent glass transition temperature, suitable to make tools with hand lay-up and infusion processes of varying sizes.
ARL-138 / AH-417	100 : 30	200 - 300	90 - 120	100 - 110	A low viscosity ambient curing epoxy system offers high glass transition temperature, facilitates superior wetting of fiber enabling higher productivity.
ARL-140 / AH-419	100 : 42	2,500 - 3,000	600 - 700	190 - 220	A tooling system with high glass transition temperature for dimensional stability even at high temperatures.
ART-22 / AH-326	100 : 6	Paste (grey)	15 - 20	85 - 95	A gel coat with high thermal conductivity, excellent hardness and surface finish.
L-552 / K-552	100 : 38	600 - 700	110 - 160	115 - 130	A low viscosity epoxy system offers high glass transition temperature with superior chemical resistance.

¹Brookfield viscosity

10

^{*}Method: Gel time - DIN 16945

²Pot life of 100 g mix mass

³Tg: Glass transition temperature

^{*}Method: Mix viscosity - ASTM D5478; Pot life - ASTM D2471; Tg - ISO 11375-2

²Pot life of 100 g mix mass

³Tg: Glass transition temperature

^{*}Method: Mix viscosity - ASTM D5478; Pot life - ASTM D2471; Tg - ISO 11375-2

²Pot life of 100 g mix mass

³Tg: Glass transition temperature

 $[\]star \text{Method: Mix viscosity - ASTM D5478; Pot life - ASTM D2471; Tg - ISO 11375-2Zv}$

INDIA Head office

Atul 396 020, Gujarat

Atul 396 020, Gujarat India Telephone: (+91 2632) 230000 E-mail: contact@atul.co.in

Polymers Business - Mumbai (Goregaon)

Floor 15, C wing, Lotus Corporate Park Western Express Highway, Goregaon (East) Mumbai 400 063, Maharashtra India

Telephone: (+91 22) 39877700 E-mail: polymers@atul.co.in

Registered Office

Atul House G I Patel Marg Ahmedabad 380 014, Gujarat India Telephone: (+91 79) 26461294 I 3706

Polymers Business - Mumbai (Dadar)

310-B, Veer Savarkar Marg Dadar (West) Mumbai 400 028, Maharashtra India Telephone: (+91 22) 39876000

OUTSIDE INDIA

Atul Brasil Quimicos Ltda

Avenida Ipiranga, 318 Conjunto 1.001 Bloco A - Bairro República São Paulo (SP), CEP 01046-010 Brazil Telephone: (+55 19) 999442500

Atul China Ltd

Room number 806 Building 2E 686 Wuzhong Road Shanghai 201103 China Telephone: (+86 21) 64753255

Atul Europe Ltd

1|B Dean Row Court Summerfields Village Centre Dean Row Road Wilmslow SK9 2TB, Cheshire United Kingdom Telephone: (+44 1625) 539209

Atul Middle East FZ-LLC

Office number 43, Floor 3 Nucleotide Complex Dubai Science Park, Emirates Road Al Barsha South Dubai PO Box 500767 United Arab Emirates

Atul USA Inc

Building number 400 6917 Shannon Willow Road Charlotte NC 28226 United States of America Telephone: (+1 704) 540 8460

